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Abstract 
 
The aim of this paper seeks to introduce the basis of the energy economics 
models defined as a market equilibrium problems-mixed complementarily 
problem (MCP). This technique allows the integration of bottom-up 
programming models of the energy system into top-down general computable 
equilibrium models (CGE) of the overall economy. A complementarily scheme 
involves both primal and dual relationships, often doubling the number of 
equations and the scope of error. When the underlying optimization includes 
upper and lower bounds (many decision variables), the explicit treatment of 
associated income effects may become very complex. A convenient MCP 
formulation of both, top-down & bottom-up energy system models for energy 
policy analysis requires the uses of complementary methods to solve the 
economic equilibrium.  
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1.  Introduction 
 
The two modelling paradigms in order to represent interactions between the energy system 
and the economy are the Top-down & Bottom-up models (Hourcade et al., 2006) – 
respectively these terms regards aggregate and disaggregated models. The first one 
emphasizes economy-wide features, while those in the second one focus on sectoral and 
technological details. The dichotomy of energy-economy models into these two categories is 
sometimes traced back to competing paradigms (Weyant, 1985). 

Top-down models examine the broader economy and incorporate feedback effects 
between different markets triggered by policy-induced changes in relative prices and 
incomes. They typically do not provide technological details of energy production or 
conversion (e.g., non incorporate assumptions about discrete energy technologies and how 
costs will evolve in the future; they also violate fundamental physical restrictions of 
thermodynamic). Energy sectors and other non-energy sectors are mostly aggregated by 
production functions which capture substitution (transformation) possibilities via substitution 
(transformation) elasticities.   

Bottom-up models are usually defined as mathematical programming problems 
(describe current and prospective technologies in detail). They are well suited in order to 
analyse specific technological changes or policies regarding efficiency (productivity) 
standards. Beyond the lack of economy-wide interactions, a common shortcoming of the 
bottom-up approach emerges from the integrability conditions of mathematical programs 
(Pressman, 1970; Takayma & Judge, 1971). Since first-order conditions impose efficient 
allocation, primal or dual mathematical programs fail to account for initial second best (e.g., 
initial tax distortions or market failures). 

There are several hybrid schemes that try to combine modelling efforts of both 
approaches - broadly classified into three followings categories:  

The first one attempts to couple existing large-scale bottom-up and top-down models 
(e.g., Hofman & Jorgenson, 1976; Hogan & Weyant, 1982; Messner & Strubegger, 1987;  
Drouet et al., 2005; Schäfer & Jacoby 2006). Due to the heterogeneity in complexity and 
accounting methods across the sub-models such a “soft-link” approach may face substantial 
problems in achieving overall consistency and convergence of iterative solution algorithms.  

The second category focuses on one model type complemented by reduced form 
representation of the other. A common approach within this category is the linkage of 
bottom-up energy system models with a highly aggregate one-sector representation of macro-
economic production and consumption in a single optimization framework (e.g. Manne, 
1977; Manne et al., 2006; Bahn et al.,1999; Messner & Schrattenholzer, 2000; Bosetti et al., 
2006).  

The third more recent category combines bottom-up and top-down characteristics 
directly through the specification of market equilibrium models as Mixed Complementarily 
Problems (Cottle & Pang, 1992; Rutherford, 1995). The explicit representation of weak 
inequalities and complementarities between decision variables and market equilibrium 
conditions in the MCP formulation permits the modeller to capture both, technological details 
and economic richness in a single mathematical format (Böhringer, 1998; Böhringer and 
Rutherford, 2007). The availability of robust large-scale solvers for MCP problems (Dirkse 
& Ferris, 1995) has promoted the implementation of hybrid energy-economy models in the 
MCP format to analyse energy regulation policies (e.g., Böhringer et al., 2003; Frei et al., 
2003). 
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Despite the appeal of the integrated MCP approach regarding to flexibility and overall 
consistency, complexity and dimensionality may impose significant restrictions to their 
application (optimization problem includes many upper and lower bounds). Bounds can be 
incorporated in the MCP framework but the explicit representation of associated income 
effects may become intractable.  

An integrated MCP model can be decomposed and solved iteratively: some 
complementarily methods are used to solve the top-down economic equilibrium model and 
quadratic programming is also applied to solve the underlying bottom-up energy (supply) 
model. Rapid convergence of iterative procedure (e.g., Jacobi algorithm) requires that the 
decomposed energy sector be small in value terms relative to the rest of the economy - 
Marshallian demand approximation in the energy sector model provides a precise local 
representation of the general equilibrium demand. 

The combination of both approaches constitutes a long-standing challenge in applied 
energy policy analysis. The formulation of economic equilibrium conditions as some mixed 
complementarily problem provides a unifying framework for combining technological details 
and economic richness.   

In order to propose a decomposition procedure that overcomes the limitations of the 
integrated mixed complementarily approach is possible to combine different mathematical 
formats (e.g., mixed complementarily and mathematical programming). Complementarily 
methods will fit in order to solve the top-down economic equilibrium model - quadratic 
programmings are more precise solving underlying bottom-up energy supply model. 
 
2.  Integrated Model Formulation 
 
The MCP approach provides a general mathematical format that covers weak inequalities, 
(i.e. a mixture of equations and inequalities, and complementarily between variables and 
functional relationships), with linear or non-linear system of equations or mathematical 
programming. Therefore, the formulation relaxes the integrability constraints for equilibrium 
conditions, which emerge as first-order conditions from primal or dual optimization problems 
(Böhringer & Rutherford, 2007) – also allowing the representation of market inefficiencies 
(e.g., Spillover effect).  

One possible formulation of an integrated model considers a competitive (Arrow-
Debreu) economy with n commodities (including economic goods, energy goods and primary 
factors) indexed by i, m production activities (sectors) indexed by j, and h households 
(including government) indexed by k. If we extend the MCP framework suggested by 
Mathiesen (1985) embedding an explicit linear-programming sub-model of energy supply in 
the economy - the decision variables might be classified in the following way:  
p  Denotes a non-negative n-vector in prices for all goods factors. 
y  Is a non-negative m-vector for activity levels of constant returns to scale (CRTS)  

production sector. 
Μ  Is an h-vector of consumer income levels. 
e  Represents a non-negative n-vector of net energy system outputs (e.g. oil, gas,  and 

biomass).  
x  Denotes a non-negative n-vector of energy system inputs (e.g. labour, capital) 
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The competitive market equilibrium for this economy must be represented by an 
economic vector (i.e., activity levels, non-negative vector of prices, and non-negative vector 
of incomes): 
 
• No production activity makes a positive profit (zero-profit condition): 
 

0)( ≥Π− pj    (1) 
 

)( pjΠ  Denotes the unit profit function for CRTS production activity j, which is calculated 
as the difference between unit revenue and unit cost (i.e., )()()( pcprp jjj −=Π ). 
 
• Excess of supply, (i.e. supply minus demand, is non-negative for all goods and factors) the 
market clearance condition is: 
 

∑ ∑ ∑ +≥++Π∇
j k k

kkkjj xMpdewyp ),()(   (2) 

 
kw  Is the initial endowment vector for household k and ),( kMkd  is the utility-maximizing 

demand vector for household k. 
 
• Expenditure for each household equal’s their income (budget constraint): 
 

[ ])( xewp kk
T

k −+=Μ θ    (3) 
 

kθ , represents the share of energy-sector rents that accrue to household k (rents depend on 
household ownership of energy resources). The consumer income equation is different from 
the zero profit and market clearing conditions is non explicit complementarily. The income 
variables will be added to the equilibrium system in order to simplify the equation of 
household demand. Furthermore, we assume that the equilibrium levels of energy sector 
outputs and inputs are consistent with profit-maximization, taking market prices as given: 
• Energy sector supply and demand vectors are profit-maximizing choices subject to 
technical constraints. That is, e and x solve a linear programming model (non-linear). Let us 
to assume the following bottom-up model:  
 

)(max xepT −    (4) 
Subject to. 

uzlxe
Czx e

≤≤≥
≥Β+Α

;0,
 

 
nMRC *, ∈Α , and NMRB *∈ characterize technical constraints and NRz∈ denotes decision 

variables of the energy system. 
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    For example if we assume a linear program the integrated model will be incorporated 
through the associated Kuhn-Tucker conditions and solved simultaneously with the 
equilibrium conditions (1)-(3): 
 

;pCT ≥π    ;0≥e    0)( =− pCe TT π  
 

;πTAp ≥    ;0≥x    0)( =− πTT Apx  
 

;CeBzAx ≥+    ;0≥π    0)( =−+ CeBzAxTπ  
 

;uzl ≤≤    ;0, ≥μλ    ;0)( =− lzλ   0)( =− zuμ  
 

;μπλ =+ TB  
 

The attribution of energy-sector rents to households is the equation (3) rewritten in the 
following way: 
 

)( lupM TT
kk

T
k λμω +Θ+=  

 
Nh

k R *∈Θ  Determines rents on energy-sector resources to households. The integrated 
equilibrium for this hybrid model consists in m+3n+h+M+3N equations as compared with the 
standard economic model of dimension m + n + h and the original linear programming model 
with M constraints and N + 2n variables.  
 
3.  Decomposition 
 
The insertion of the energy-sector sub-model within the general equilibrium framework 
imply computational challenges (dimensions of energy sectors) – captured by N +M. While 
an integrated MCP formulation is attractive for highly aggregated system (macro energy 
system) representations, it has limitations for large-scale systems with bounds on many 
variables - awkward to implement and has difficulties too explain associated income effects.  

One interesting possibility is the complementarily of schemes with a decomposition 
between integrated model in which the energy system bottom-up component will be 
computed separately from the top-down economic general equilibrium sub-model. The  
procedure involves iterative solution for the top-down general equilibrium model given net 
supplies from the bottom-up energy sector sub-model - followed by the solution of the 
energy sector sub-model based on a locally calibrated set of  demand functions for energy 
sector outputs. When )( xe −  and θ  are given exogenously, the top-down general equilibrium 
model can be solved as a complementarily problem of dimension m + n + h. 

Suppose that computed equilibrium prices are p  (based on an initial estimate for the 
energy sector response xe ,  andθ ). The next step in a recursive solution procedure updates 
the values of )( xe−  and θ  based on p . One might then consider a direct solution of the 
profit-maximizing, which characterizes the choices of an individual firm. However, is 
possible that this approach is quite likely to fail because the profit-maximizing linear 
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program (4) does not properly link to market demand responses regarding changes in energy 
prices. Suppose that these demand elasticities are given byε , next we might write the 
demand for energy good i as: 

 
[ ])1/(1)( −−= iiiii ppepe ε  

 
Where iε is the demand elasticity and ie , ip  denote the reference quantities and prices 

for the demand function calibration. Hence, the calibrated inverse demand function is: 
 

[ ]iiiii eepep ε/)/1(1)( −−=  
 

and the integrated market demand function is: 
 

;
2

21)(∫ ⎥
⎦

⎤
⎢
⎣

⎡ −
−=

ii

ii
iiiii e

eeepdeep
ε

 

 
An aggregate (integrated) multi-commodity energy system may then be solved as a 

quadratic programming problem: 
 

∑ −−−
i

ii
ii

iiT ee
e
epxep )2(

2
1)(max

ε
 (5) 

subject to the same constraints which appear in (4)  in order to compute a partial market 
equilibrium based on linear demand functions locally calibrated to the given macroeconomic 
equilibrium.  

In the Figure 1, we show the basic steps involved in the iterative model solution. The 
top-down model is solved as a complementarily problem, taking net energy supplies ie  and 
energy sector inputs x  as given. The computed equilibrium determines prices ip  and a set of 
linear demand curves for energy sector outputs );( εpDi . These demand curves and relative 
prices parameterize the bottom-up model which may be solved as a quadratic program. 

 
Figure 1: Iterative Decomposition Algorithm 

 
 

 
 

 
 

);(, εpDp ii

xeSi ,,~
 

Top-Down Scheme 
 

uzlzF ≤≤⊥)(  

Bottom-Up Scheme 
 

xx

T

uxl
bAx

ts
Qxx

≤≤
=

..
max
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We essentially use the decomposition procedure to compute a single sector 
Marshallian market equilibrium with a nonlinear demand curve DD  and a piecewise linear 
supply schedule S . The starting point of the algorithm is the initial estimate of 0Q  for the 
quantity of energy supply. This quantity has an associated market price (marginal willingness 
to pay) 0p  and market equilibrium point a. Having computed this equilibrium (ignoring the 
supply schedule), the algorithm next evaluates the energy market based on a linear demand 
curve calibrated to the market equilibrium at point a. The solution to the supply problem 
maximizes the sum of consumer and producer surplus (the shaded area), resulting in an 
equilibrium supply of 1Q  at a marginal cost of 1c , given 1Q , the algorithmic steps are 
repeated to converge at the equilibrium solution ( **,QP ). 

For a multi-market general equilibrium - the shifts in the demand for one good induce 
changes in the demand for other goods through general equilibrium income and cross-market 
price effects.  

Equilibrium effects lead to the energy demand function 11 DD − (do not present this 
level change in the figure) which is approximated locally at b. The iterative algorithm quickly 
converges as the decomposed energy sector is relatively small compared to the rest of the 
economy: The Marshallian demand approximation in the energy sector model then provides a 
precise local representation of the general equilibrium demand.  

 
4.  Implementation 
 
Suppose a representative economic agent with two non-energy goods ),( yx  and a set of four 
energy goods (oil, gas, biomass and electricity). We begin with an algebraic characterization 
of the primal optimization setting. Then we provide a re-scheme of the model as a mixed 
complementarily problem. Next, we lay out the decomposition of the integrated top-
down/bottom-up model and describe how such a model can be calibrated to base-year social 
accounts. Finally, we refer to a large-scale implementation of the decomposition (e.g., multi-
region intertemporal general equilibrium) that combines a bottom-up representation of the 
energy supply sector with a top-down description of macroeconomic production and 
consumption (Manne et al., (2006). 
 
4.1 The Integrated Model - Primal Optimization Setting 
 
Energy goods are produced by a discrete number of technologies. Aggregate supply iE  of 
energy good i equals output itz  from all technologies t producing that energy good i: 
 

∑=
t

iti zE   (6) 

 
Consumer demand is modelled as budget-constrained utility maximization by a 

representative agent: 
 

),,(max ccc Eyxu  
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s.t. MEpypxp c
i

i

E
icycx =++ ∑  

 
Where, u denotes the utility from consumption of non-energy goods cx  and cy  as 

well as from the final energy consumption composite yxc ppE ;;  and E
ip  are the prices for 

non-energy and energy goods; c
iE  refers to the final consumption demand of energy good i; 

and M denotes the income of the representative household. Consumer preferences which 
trade off composite final energy cE and non-energy goods at a constant elasticity of 
substitution (CES) are given as: 

 
)1/(11)1()1( )))(1((,,(

ccccc

ccc
c

cc yxEEyxu σσθθσ αα −−−− −+==   (7) 
 

Where, cσ is the substitution elasticity; α denotes the distribution parameter; and cθ  
is the value share of x  demand in the Cobb-Douglas xy - composite of final demand. 
Substitution possibilities across energy goods in final demand are characterized by a CES 
function: 

 
( ) )1(

1
1

0 )(
ECEC

i

c
iiEE σσβ −−∑=    (8) 

Where, iβ  is the distribution parameter; and ECσ  denotes the elasticity of 
substitution. Consumer income (M) is determined by wages w, earnings r on sector-specific 
capital and scarcity rents itu on capacities of energy technology t producing energy good i: 

 
∑+++=

it
itityyxx zLwKKM μγγ   (9) 

 
Where, xy KK ,  denote sector-specific (fixed) capital; L  is the fixed labour supply; 

and itz  denotes the capacity constraint on technology t producing energy good i. Goods x and 
y introduce intermediate demand to energy production and final consumption demand: 

 
∑ +=

it
cit

x
it xzx α   (10) 

 
∑ +=

it
cit

y
it yzy α  (11) 

 
Where, )( x

it
y
it aa  denote the (per-unit) input coefficient of non-energy input to the 

production of energy good i by technology t; itz  is the activity level of technology t 
delivering energy good i. Energy supplies are introduced as intermediate inputs into the 
production of non-energy goods and final demand. Furthermore, energy supplies serve as 
intermediate inputs to the production of other energy goods. The market clearance condition 
for energy good i is: 
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∑
′

′′+++=
ti

titii
c
i

y
i

x
ii zbEEEE  (12) 

 
Where, tiib ′  is the input coefficient of energy good i into technology t producing 

energy good i′ . The labour market is cleared by the real wage w: 
 

LLL yx =+  (13) 
 

Likewise, rental rates xγ  and yγ  clear sector-specific capital markets: 
 

xx KK =   (14) 
 
yy KK =   (15) 

 
Upper binds on energy sector technologies are realized through adjustment of 

technology-specific rents itμ : 
 

itit zz ≤≤0   (16) 
 

 Production of no-energy goods x and y  is based on profit maximization subject to 
technical constraints: 
 

∑+−
i

x
i

E
ixx EpwLxpmax   s.t.   ))(,,( ,

x
xxxx EgLKfx =  

and  
∑+−

i

y
i

E
iyy EpwLypmax   s.t.   ))(,,( ,

y
yyyy EgLKfy =  

 
Three-level nested separable CES functions characterize trade-offs between primary 

factors and energy in the production of goods x and y. At the top level, energy composite is 
combined with a Cobb-Douglas aggregate in labour and capital subject to a constant 
elasticity of substitution: 

 
)1)(1()1( )1((),,( iii

iiiiiiiii LKEELKf σθθσ γγφ −−− −+= },{ yxi∈  
 

Where, iφ  is the efficiency parameter, iγ  is the distribution parameter, and iσ is the 
elasticity of substitution. 

At the lower level, energy inputs are combined (to a sector-specific energy input 
composite iE ) distinguishing substitutability differences between electricity, biomass, oil, and 
gas: 

 
)1/()1()1(,1(

,
,
,

)1(
,, )))(1((

E
i

ele
i

E
iii

E
i

ele
i gas

igas
oil
ioiliibmsiielei EEEEE σθσθθσθ δδ −−−−− −+= },{ yxi∈  
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Where, ele
iθ  is the value share of electricity in the Cobb-Douglas energy composite 

demand of sector i; iδ  is the distribution parameter; oil
iθ  refers to the value share of oil in the 

Cobb- Douglas oil-gas composite; E
iσ  denotes the substitution elasticity between biomass 

and the oil & gas composite. Energy sector supplies are produced by profit-maximizing 
firms. The technology t that produces energy good i is then selected at a level which 
maximizes returns subject to capacity constraints: 

 
∑
′

′−−−
i

iti
E
i

y
ity

x
itx

E
iit bpapappz )(max    s.t.   itit zz ≤  

4.2  The Integrated Model – MCP 
 
The model presented above omits a number of complications which arise in applied general 
equilibrium models. These might include multiple consumers with distinct preferences, taxes 
and incomes, knowledge spillover, or from the market side different structures like imperfect 
competition. In the absence of these features which typically violate integrability conditions, 
the integrated model can be solved as a conventional non-linear program by maximizing u 
subject to (6) through (16).  
     The optimization approach is, however, often too restrictive in terms of the model 
features which need to be included for concrete policy analysis. The complementarily format 
offers a flexible alternative to non-linear optimization as a mean of representing economic 
equilibrium models through “canonical” general equilibrium conditions (see conditions (1), 
(2), and (3)).  

The algebraic representation begins from the dual cost minimization problems of the 
individual producers. For sectors i = {x, y} we have cost-minimizing unit energy costs given 
by: 

 
)1(

1
1(

)1()1(

)1)(1()1(
)1(

E
i

E
ioil

i
oil
i

E
i

ele
i

oil
ii

gas
oil
ii

oil
i

i

bmas
iele

i

eleE
i

ppppp

σσ
θθσθ

θδθδ
δ

δ
δ

θ

−−
−−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 Unit profits functions for x and y are in turn given by: 
 

)1(
1

)1)(1()1()1(

)1)(1()1(
)1(1

i
iiiii

iiii

i
i

i

E
i

i
i

ii
wpp

σ
σθσθσ

γθγθ
γγ

γ
γ

φ

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∏

−−−−

 

 
The unit cost of energy inputs to final demand are given by: 
 

)1(
1

1 ECE

i

E
i

i
i

E
c

pp
σσ σ

β
β

−−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑  

 
And the resulting cost of a unit of final consumption is: 
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)1(
1

1
)1(1

)1)(1()1(
)1(

cc
ccc

c
y

c
x

E
cc pppp

σσ
θθσ

αθαθ
α

α
α

−−
−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
Finally, the unit profit associated with technology t for energy good i = {oil, gas, 

biomass} is: 
 

∑
′

′ −−−−=Π
i

ititi
E
i

y
ity

x
itx

E
i

E
it bpapapp μ  

 
Given the underlying functional forms, we observe that the complementarily 

conditions only will apply for the energy sector technologies and the shadow prices on the 
associated capacity constraints; all of the macro economic prices and quantities will be non-
zero. According to Shepard’s Lemma we have the following mixed complementarily 
problem: 

Zero-profit conditions: 
0≥⊥≥ ititit zz μ    (17) 

 
00 ≥⊥≥Π− it

E
it z   (18) 

 
0=Π x  (19) 
 
0=Π y   (20) 
 

Market clearance conditions: 
 

∑ ∂
∏∂

+=
it x

C
it

x
it p

czx α  (21) 

 

∑ ∂
∏∂

+=
it y

C
it

y
it p

czy α  (22) 

 

w

y

w

x yxL
∏∂
∏∂

+
∏∂
∏∂

=  (23) 

 

x

x
x xK

γ∂
∏∂

=   (24) 

 

y

y
y yK

γ∂
∏∂

=   (25) 
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∑ ∑
′

′′ ∂
∏∂

+
∂
∏∂

+
∂
∏∂

=−
t ti

E
i

y
E
i

x
E
i

c
titiiit p

y
p

x
p

czbz   (26) 

 

cp
Mc =    (27) 

Income balance 
 

∑+++=
it

itityyxx zLwKKM μγγ   (28) 

 
Activity Variables 
 
c    Aggregate consumption; 

yx,     Production of goods x and y;  

iE  Aggregate output of energy good i ; 

itz  Production by technology t for energy good i;  
y

i
x
i EE ,  Demand for energy good i in sector x and y;   
c
iE      Final demand for energy good I; 

yx LL ,  Labor demand in goods x and y; 
 
Price Variables 
 

cp    Price index of final consumption; 

yx pp ,  Non-energy goods x and y; 
E
ip    Energy prices for i = {oil, gas, electricity}; 

w     Wage rate; 
yx γγ ,    Returns to non-energy capital; 

itμ    Energy sector rents; 
 
Income Variables  
 
M    Income of representative agent; 
 
4.3  Decomposition 
 
Decomposition strategy mainly requires the splitting of integrated model into a top-down 
model for the overall economy and a bottom-up model of the energy supply system, which 
might be a computable general equilibrium scheme. Within the top-down model, we treat net 
energy system net puts as exogenous. Energy supply activities are no longer endogenous and 
we can drop equations (17) and (18). Net energy supplies and inputs of non-energy goods to 
the energy system enter the top-down model as parameters.  
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Parameterized energy-sector net puts iS~  and inputs Ex~  and Ey~  are valued at market 
prices which implicitly include rents on specific energy resources (so we can drop these from 
the income constraint). The adjusted market clearance condition for energy goods within the 
top-down model is: 

 
c
i

y
i

x
ii EEES ++=

~    (29) 
 

and the revised market clearance conditions for non-energy goods are: 
 

x

c
E p

cxx
∂
Π∂

+= ~   (30) 

 
and 

y

c
E p

cyy
∂
Π∂

+= ~   (31) 

 
The revised income balance (28) reads: 
 

EyEx
i

i
E
iyyxx ypxpSpLwKKM ~~~

−−+++= ∑γγ (32) 

 
The bottom-up model can be represented as a quadratic programming problem - the sum of 
producer and consumer surplus is maximized subject to supply-demand balances for energy 
and resource bounds on technologies: 
 

EyEx
ii

ii
i

E
i ypxp

S
SSp ~~

2
21~max −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+∑ ε

   (33) 

 
s.t. 

∑ ∑ ′ ′′−=
t ti titiiiti zbzS  

∑ ′=
it ti

x
itE zx α  

 
∑ ′=

it ti
y

itE zy α  
 

itit zz ≤≤0  
 

- Variables and Parameters in Decomposed Model 
 

iS      Net supply of energy i; 

EE yx ,   Aggregate demand for x and y as inputs to energy production; 

tiz ,     Activity level of technology t producing energy good i; 
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Parameters 

iS~    Reference level of demand or supply for energy good i; 
E
ip~   Reference price of energy good i ; 

yx pp ~,~   Reference prices of non-energy goods x and y; 

iε     Demand elasticity for energy i; 
 
4.4 Parameterization 
 
According to King (2005), the model must be parameterized with economic data. The 
benchmark statistics are given in terms of a social accounting matrix (SAM), because their 
provided details of the energy demand structure in sectors x and y as well as in final demand - 
“e” summarizes total energy supplies by energy carrier i and non-energy inputs to energy 
production.  
 

Base Year - Social Accounts Matrix     
         
  x y e fd  Key 

x -     -  x:Energy intensive production 
y   - - -  y: macro production 
L - -   -  e: energy production 
k -  -   -  fd:final demand 

ele - - - -  ele: electricity 
oil - - - -  oil: oil 
gas - - - -  gas: natural gas 
bms - - - -  bms: biomass 

 
The generic procedure in order to aggregate the economy’s energy supply side can be 

further detailed through a discrete representation of energy supply technologies thereby 
warranting consistency with the aggregate data.  
     First, is necessary to specify the desired number of technologies which are available 
for the generation of energy commodities. Second, randomly generate cost distribution for 
each technology thereby assigning a certain fraction of technologies as initially idle at 
benchmark prices. The cost structure of discrete technologies – fuel costs and non-energy 
input costs – is then again assigned randomly; capital earnings (i.e. scarcity rents on 
technological capacities, are determined as a residual) - if a specific technology is initially 
idle, the initial rents are obviously zero. Finally, relative capacities are randomly assigned 
and scaled such that net energy supply equals the given overall economic energy demand.  

The decomposed integrated model is solved iteratively in its top-down and bottom-up 
sub-models. After an exogenous policy shock, we may first solve the top-down model. Next, 
we solve the bottom-up model taking into account the equilibrium prices of the top-down 
model. The solution values of the bottom-up model are subsequently used to update the 
quantities on energy system outputs and inputs which enter into the top-down model. 
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4.5  Large - Scale Implementation 
 
To assess the performance for large-scale problems is necessary to implement a 
decomposition algorithm. The decomposition provides a convenient approach to solve the 
large-scale energy supply model for example (non-exclusive procedure) as quadratic 
programming problem without the explicit treatment of income effects. Within a single 
iteration of the decomposed solution process, output from the macroeconomic model 
characterizes demand for electric and non-electric energy by region and time period. The 
energy model then calculates the evolution of technologies which supply electric and non-
electric energy, contingent on energy demands.  

Energy demands are usually represented by linear demand functions (also non-linear 
specifications are possible) calibrated to the current solution of the macroeconomic top-down 
model.  
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