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Abstract
Over recent decades, the link between crude oil and agricultural markets has been rein-

forced following the introduction of biofuels. We use timely measures of (co)variation

spillovers to analyze the role of crude oil in shaping price uncertainties of agricultural

commodities, which are largely used as biofuel feedstocks. Our sectoral- and market-

specific measures distinguish tranquil (1995–2005) and crisis episodes (2006–2015),

as well as periods during which either consumption mandates or tax credits were

enacted to spur biofuels. During the crisis period, crude oil volatility transmissions

account for 16% (20%) of price uncertainties in ethanol (biodiesel) feedstock markets

on average. Moreover, we find evidence of enhanced volatility transmissions under

tax credit regimes compared with consumption mandates. The results from pooled

regressions confirm stronger volatility transmissions by about 12% under the enact-

ment of tax credits.
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1 INTRODUCTION

Periods of high price uncertainty on staple food markets—

like those observed during the food crisis of 2006 and after

the financial crash of 2008—have led to considerable private

and social costs. Developing countries are particularly vulner-

able to food price volatility, as food expenditures represent a

major budget share for most of their populations. Additionally,

increased uncertainty on feedstock markets might discourage

investments in agriculture, which could in turn threaten food

security in the medium term by reducing food availability and

increasing nourishment costs. In sum, pertinent food price

volatility potentially leads to social unrest and political insta-
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bility (FAO et al., 2011; Prakash, 2011). Although the exist-

ing literature attributes the increasing volatility of agricultural

prices to different factors and their interactions, there is a

special interest in the effects of crude oil price changes on

agricultural markets.1

The literature on volatility spillovers between crude oil

and food markets has been growing since the early-2000s.

Most articles assess correlations or causalities in the Granger

sense (e.g., Busse, Brümmer, & Ihle, 2011; Harri & Hud-

son, 2009; Mensi, Hammoudeh, Nguyen, & Yoon, 2014;

1 For a review of potential determinants of price volatility on agricultural mar-

kets, see, for example, Brümmer, Korn, Schlüssler, Jaghdani, and Saucedo

(2013).
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Nazlioglu, Erdem, & Soytas, 2013), while others focus on

inferential diagnostics retrieved from cross-market volatility

specifications (e.g., Alom, Ward, & Hu, 2011; Serra, Zilber-

man, Gil, & Goodwin, 2011; Wu & Li, 2013). To the best of

our knowledge, Wu, Guan, and Myers (2011) and Trujillo-

Barrera, Mallory, and Garcia (2012) are exceptional in pro-

viding model-implied measures of volatility spillovers from

crude oil to agricultural products. The linkage between oil

and agricultural commodities was traditionally determined by

using oil derivatives as inputs for crop production, process-

ing, and transporting. Despite being close substitutes for fos-

sil fuels (i.e., gasoline and diesel), relatively high production

costs imply that biofuels derived from cereals, sugar crops,

and oilseeds only scarcely compete with their fossil counter-

parts. Consequently, without adequate subsidy-like support-

ing measures, they are driven out of competitive markets such

as that for transport fuels. Against this background, ambi-

tious policies have boosted biofuel output and provoked unin-

tended consequences in agricultural markets, such as reduc-

ing per capita food availability, price runs, and augmented

price uncertainty of staple foods (Wright, 2014).2 Policies

to foster the use and production of biofuels include blend-

ing mandates and tax exemptions. Additionally, governments

have intervened by means of subsidizing feedstock production

factors (labor, capital, land) or offering releases to final prod-

ucts (de Gorter, Drabik, Just, & Kliauga, 2013; Sorda, Banse,

& Kemfert, 2010). While mandates oblige consumers to use

a certain portion of biofuels mixed with fossil fuels (gasoline

and diesel), tax credits are duty relieves gained by blenders

for units of biofuel that they mix with gasoline or diesel. As

a result of policy interventions, biofuels start to follow price

dynamics of crude oil and their derivatives markets. Focusing

on first-order price linkages among feedstocks, biofuels, and

crude oil, de Gorter, Drabik, and Just (2015) ascertain that

during periods when blending requirements govern the price

discovery of biofuels, their feedstock prices primarily follow

the dynamics on agricultural markets. However, if tax credits

are binding,3 feedstock markets are more subjected to price

discoveries on crude oil markets.

The objectives of this article are twofold. In the first

instance, we aim at the provision of flexible dynamic mea-

sures that summarize directional (co)variation flows with high

time resolution and at distinct scales (singular markets, sectors

or entire dynamic systems). In the second instance, we take

advantage of suitably defined spillover statistics (a) to quan-

2 Major biofuel policies aim to reduce greenhouse gas emissions, diversify

energy sources and foster regional development. The International Energy

Agency has estimated the global subsidy costs of biofuels (including con-

sumption mandates) at US$ 1.4 trillion for the period between 2011 and 2035

(Gerasimchuk, Bridle, Beaton, & Charles, 2012).

3 de Gorter, Drabik, Just, and Kliauga (2013) consider a policy as binding if

it determines the price formation of biofuels.

tify pre- and postcrisis vulnerabilities of feedstock markets

to crude oil shocks, and (b) analyze the particular effects of

two major biofuel policies –tax credits and blending targets—

on the intensity of crude oil volatility transmission to major

feedstock markets. In order to achieve these purposes, we

adopt the volatility spillover indices of Fengler and Herwartz

(2018), which are derived from linearized versions of mul-

tivariate GARCH (MGARCH) models. By means of daily

quotes of crude oil and feedstock prices covering the period

from October 1995 until February 2015, we quantify volatil-

ity transmission outcomes among grains, sugar, vegetable

oils, and crude oil markets. Implemented at high frequency,

the adopted framework allows tracing differentiated volatil-

ity transmission patterns induced by events at particular time

points, such as crisis periods or policy interventions.

Our results suggest that—compared with ethanol feed-

stocks (corn, wheat, and sugar)—vegetable oil markets

(soybean, rapeseed, and palm) are more sensitive to shocks

originating in crude oil markets, in particular soybeans with

reference to the food crisis of 2006 and the financial turmoil

of 2008. Besides financial unrest, uncertainty levels on

crude oil markets and policy regimes also exacerbate crude

oil volatility spillovers to feedstock markets. In terms of

marginal policy-induced volatility receptions, largely traded

ethanol feedstocks are more responsive to crude oil markets

compared with vegetable oils.

In Section 2, we provide a brief overview of the method-

ological approaches followed in the related literature and their

main findings. In Section 3, we outline how the impacts of

(co)variations of crude oil prices on agricultural price uncer-

tainties are assessed in this work. In Section 4, we (a) describe

the data, (b) provide magnitudes and directional measures of

volatility spillovers, and (c) discuss estimates of the distin-

guished effects of two major biofuel policies on the transmis-

sion of oil (co)variations to agricultural markets. Finally, Sec-

tion 5 summarizes and concludes.

2 ECONOMETRIC PERSPECTIVES
ON THE FOOD–OIL NEXUS

Having experienced episodes of enhanced food price volatil-

ity, the international community has renewed its interest in

understanding and managing the sources of uncertainties in

agricultural markets. Research on dynamic relations among

agricultural and crude oil markets has mainly applied time

series econometrics to reveal causalities/correlations. For

the parameterization of the conditional mean, vector autore-

gressive (VAR) or vector error correction models (Engle &

Granger, 1987) have been frequently applied, while a few

authors have also added exogenous covariates. For instance,

Chang and Su (2010) treat crude oil log price changes
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exogenously, whereas Serra and Gil (2012) use forecasts

of the corn stock-to-use ratios and interest rate volatility

as weakly exogenous explanatory variables in the condi-

tional mean of the model specification. Among available

multivariate GARCH (MGARCH) representations,4 the

so-called BEKK specification (Engle & Kroner, 1995) has

been frequently applied, since it inherits a rich cross-equation

dynamic structure and issues positive definite covariance pat-

terns under mild conditions. Most studies applying MGARCH

models document significant parameter estimates pointing to

some degree of volatility spillovers originating in crude oil

and flowing to agricultural markets (e.g., Alom et al., 2011;

Wu & Li, 2013). Similarly, applications of so-called dynamic

conditional correlation models (Engle, 2002) often document

increased correlations between oil and agricultural products,

particularly since 2006 (e.g., Busse et al., 2011; Gardebroek

& Hernandez, 2013; Mensi et al., 2014). As an alternative to

covariance and correlation models, tests for Granger causal-

ity in variance have also prompted the conclusion that oil

volatilities are Granger-causal for volatilities in grain markets,

especially conditional on recent (i.e., post-2006) sample infor-

mation (e.g., Harri & Hudson, 2009; Nazlioglu et al., 2013).

Despite highlighting the heterogeneity of econometric

treatments of food–oil linkages, our review is far from exhaus-

tive.5 Nonetheless, it is striking that despite conceptual dif-

ferences, correlations and Granger causalities are described

interchangeably as “volatility spillovers” throughout the lit-

erature. As notable exceptions, Wu et al. (2011) and Trujillo-

Barrera et al. (2012) derive explicit measures of the total effect

of crude oil volatility on agricultural products from implied

(co)variance profiles of univariate GARCH and MGARCH

models. However, it is not straightforward to extend the frame-

work applied in Wu et al. (2011) or Trujillo-Barrera et al.

(2012) to the definition of covariance spillovers, which have

recently been found to be important channels of inter-market

information flows (Fengler & Gisler, 2015). The spillover

measures provided in the next section allow generic defini-

tions of directional (co)variation spillovers.

3 MONITORING RISK
TRANSMISSIONS IN
AGRICULTURAL MARKETS

This section first briefly outlines the spot indices of volatil-

ity transmission developed in Fengler and Herwartz (2018).

Second, we adapt their approach to vector systems of (log)

commodity price changes to address food–oil linkages. For

4 See Bauwens, Laurent, and Rombouts (2006) for a review treatment of mul-

tivariate GARCH models.

5 See Table A1 for a summary review of the recent literature on price volatility

transmission between agricultural and crude oil markets.

this purpose, we (a) determine total and directional indices,

and (b) characterize vulnerabilities on aggregated and spe-

cific (agricultural) markets. To lay the groundwork for the

empirical analysis in Section 4, the concepts and diagnos-

tic tools introduced in this section also take account of mar-

ket characteristics and specific events covered by the sample

period. We separate the agricultural commodities according to

their suitability for either ethanol or biodiesel processing. The

ethanol group comprises crude oil, corn, wheat, and sugar,

while the biodiesel group comprises crude oil, soybean oil,

rapeseed oil, and palm oil. The inclusion of crude oil in both

groups allows us to quantify food–oil (co)variation dynam-

ics. Regarding the sample period, our analysis takes account

of major events in agricultural markets after 2005.6 Accord-

ingly, our descriptive analysis of data and model implica-

tions differentiates between two subperiods, namely October

1995-December 2005 (precrisis, Period I) and January 2006-

February 2015 (crisis, Period II).

3.1 Measuring volatility spillovers with high
time resolution
3.1.1 Forecast error variance decompositions
Among rival assessments of risk transmission on speculative

markets, the spillover indices of Diebold and Yilmaz (2009,

2014) are unique in showing a rather close relation to stan-

dard diagnostics known from the VAR literature (Lütkepohl,

2007). These statistics are essentially forecast error variance

decompositions (FEVDs) derived from VAR models of real-

ized volatilities. However, in terms of analyzing market inter-

relations at high frequency, the spillover indices of Diebold

and Yilmaz (2009) are limited in scope as they build upon

the assumption of dynamically stable VARs over extended

time periods. Motivated by an interest in timely assessments

of market interdependencies and building upon traditional

FEVDs, Fengler and Herwartz (2018) propose measures of

volatility propagation (transmission and reception) from the

vector ARMA representation of a squared MGARCH process

(comprising both squared returns and return cross products).

Focusing on the BEKK variant of MGARCH models, we next

turn to a brief description of the volatility spillover statistics

in Fengler and Herwartz (2018).

3.1.2 FEVDs in linearized MGARCH models
Specified in an empirically relevant and parsimonious form, a

BEKK(1,1) model for 𝐾-dimensional vector valued log price

changes, 𝑟𝑡 = (𝑟1𝑡, 𝑟2𝑡,…, 𝑟𝐾𝑡)
′, reads as

𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡 = 𝜇𝑡 +𝐻
1∕2
𝑡

𝜉𝑡 (1)

6 Notably the 2006 food crisis, the financial crash of 2008 and the enforce-

ment of major biofuel policies such as the U.S. Energy Policy Act of August

2005 or the Energy Independence and Security Act of December 2007.
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𝐻𝑡 = 𝐶𝐶 ′ + 𝐹 ′𝜀𝑡−1𝜀
′
𝑡−1𝐹 + 𝐺′𝐻𝑡−1𝐺 (2)

where conditional expectations and covariances are 𝜇𝑡 =
E𝑡−1 [𝑟𝑡] and 𝐻𝑡 = 𝐸𝑡−1[𝜀𝑡𝜀′𝑡], respectively.7 Moreover, 𝜉𝑡 ∼
𝑁(0, 𝐼𝐾 ) is a 𝐾-dimensional innovation vector. Model

parameters are collected in the matrices 𝐺, 𝐹 and 𝐶 , with the

latter being lower triangular. With vech(⋅) denoting an oper-

ator that stacks the elements on and below the diagonal of a

𝐾 × 𝐾 matrix into a 𝐾∗ = 𝐾(𝐾 + 1)∕2 × 1 dimensional

vector, the so-called half-vec model is

ℎ𝑡 = 𝜔 + 𝐴𝜂𝑡−1 + 𝐵ℎ𝑡−1 (3)

where ℎ𝑡 = vech(𝐻𝑡), 𝜂𝑡 = vech(𝜀𝑡𝜀′𝑡), 𝜔 = vech(𝐶𝐶 ′), 𝐴 =
𝐷+

𝐾
(𝐹 ⊗ 𝐹 )′𝐷𝐾 and 𝐵 = 𝐷+

𝐾
(𝐺 ⊗𝐺)′𝐷𝐾 , with 𝐷𝐾 and

𝐷+
𝐾

denoting the so-called duplication matrix and its general-

ized inverse, respectively.8 The half-vec model allows for the

definition of a Martingale difference

𝑢𝑡 = 𝜂𝑡 − ℎ𝑡 (4)

which can serve as a heteroskedastic (𝐸𝑡−1 [𝑢𝑡𝑢′𝑡] = Ω𝑡) inno-

vation process within a vector MA representation of 𝜂𝑡 =
vech(𝜀𝑡𝜀′𝑡), that is,

𝜂𝑡 = 𝜔 + 𝐴𝜂𝑡−1 + 𝐵
(
𝜂𝑡−1 − 𝑢𝑡−1

)
+ 𝑢𝑡 (5)

= �̃� + Θ (𝐿) 𝑢𝑡 (6)

= �̃� + Θ (𝐿) Ω1∕2
𝑡

Ω−1∕2
𝑡

𝑢𝑡 (7)

= �̃� + Ψ𝑡 (𝐿) 𝜈𝑡 (8)

where Θ (𝐿) = (𝐼 −𝐿)−1 (1 − 𝐵𝐿),  = 𝐴 + 𝐵 and �̃� =
(𝐼 −)−1 𝜔. The invertibility of (1 −𝐿) holds under the

assumption that the spectral radius of  is less than unity

(Engle & Kroner, 1995). Noticing that the elements in 𝑢𝑡
are contemporaneously correlated, the effects of orthogonal-

ized shocks—denoted 𝑣𝑡 = Ω−1∕2
𝑡

𝑢𝑡 —are retrieved from the

model in (8) as

Ψ𝑡 (𝐿) = Θ (𝐿) Ω1∕2
𝑡

(9)

Unlike in homoskedastic VARs,9 the impulse responses

implied by Ψ𝑡(𝐿) are time-varying and depend on uncondi-

tional fourth-order moments of the MGARCH innovations

7 The matrix square root of 𝐻𝑡 obtains as 𝐻
1∕2
𝑡

= Γ𝑡Ξ
1∕2
𝑡

Γ′
𝑡
, where the eigen-

vectors of 𝐻𝑡 are the columns of Γ𝑡, and the diagonal matrix Ξ𝑡 has the eigen-

values of 𝐻𝑡 along its diagonal.

8 With reference to a symmetric square 𝐾 × 𝐾 matrix Z, the 𝐾2 ×𝐾 dupli-

cation matrix 𝐷𝐾 is defined by the property vec(𝑍) = 𝐷𝐾vech(𝑍).
9 See Lütkepohl (2007), Chapter 2.

𝜉𝑡, that is, E[vec(𝜉𝑡𝜉′𝑡 )⊗ vec(𝜉𝑡𝜉′𝑡 )
′]. Fengler and Herwartz

(2018) employ the half-vec MA representation in (5) to deter-

mine iterative 𝑑-step ahead predictions of Ω𝑡 at each time

origin t, denoted Ω𝑑,𝑡. Joining these predictions with the

estimated MGARCH polynomial Θ(𝐿) obtains time-varying

impulse response matrices Ψ𝑑,𝑡. Subsequently, the propor-

tion of the 𝐷-step ahead forecast error variance of variable

𝑖, accounted for by innovations in variable 𝑗 is

𝜆
(𝐷)
𝑖𝑗,𝑡

=

∑𝐷

𝑑=1

(
𝜓

(𝑡,𝑑)
𝑖𝑗

)2

∑𝐷

𝑑=1
∑𝐾∗

0𝑗=1

(
𝜓

(𝑡,𝑑)
𝑖𝑗

)2 , 𝑑 = 1,… , 𝐷 (10)

where 𝜓
(𝑡,𝑑)
𝑖𝑗

is a typical element of the 𝑑-step ahead effect

matrix Ψ𝑑,𝑡. To fully assess the result in (10), it is important to

notice that the “variables” in 𝜂𝑡 (and hence 𝑢𝑡) refer to squared

terms (𝜀2
𝑖,𝑡

, variances) and cross products (𝜀𝑖𝑡𝜀𝑗𝑡, covariances).

The elements within the ith (jth) row (column) of the matri-

ces Ψ𝑑,𝑡 quantify volatility reception (transmission) patterns

among the variables 𝜂𝑖 and 𝜂𝑗 , 𝑖 ≠ 𝑗. Adopting the indices of

Fengler and Herwartz (2018), we next define spot measures

of spillover dynamics, which provide insights into food–oil

(co)variance linkages.

3.2 Aggregate and directional spillovers
Figure 1 displays a schematic disaggregation of the effect

matricesΨ𝑑,𝑡 for the case of the ethanol group. By convention,

the log price change of oil is the first element of 𝑟𝑡. The agri-

cultural markets are ordered second (corn), third (wheat) and

fourth (sugar) within the analyzed vector of log price changes.

The “Total Spillover Index” essentially provides informa-

tion about the joint interdependence among all𝐾∗ variables 𝜂𝑖
up to horizon D. From the statistics defined in (10), it obtains

as an aggregation (column- or row-wise) of the individual

(co)variance effects displayed in Figure 1, that is,10

𝑆𝑡 =
∑𝐾∗

𝑖,𝑗=1, 𝑖≠𝑗 𝜆𝑖𝑗,𝑡

𝐾∗ (11)

Moreover, statistics in each column (row) of Ψ𝑑,𝑡 corre-

spond to directional effects originating in (going to) specific

variables in 𝜂𝑡. Directional spillovers—that is, volatility trans-

missions and receptions—read as

𝑇𝑗,𝑡 =
∑𝐾∗

𝑖=1, 𝑖≠𝑗 𝜆𝑖𝑗,𝑡

𝐾∗ and 𝑅𝑖,𝑡 =
∑𝐾∗

𝑗=1, 𝑗≠𝑖 𝜆𝑖𝑗,𝑡

𝐾∗ (12)

respectively. For instance, as displayed in Figure 1, row 5 of

Ψ𝑑,𝑡 contains effects received by the variance of corn (𝜂5𝑡)

10 Focusing on cross-market dynamics, “diagonal” statistics 𝜆
(𝐷)
𝑖𝑖,𝑡

do not con-

tribute to (co)variance spillovers. For notational convenience, the underlying

forecast horizons, d, D are omitted from the definition of spillover indices.
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`

To
Oil
var

Oil-Cor
covar

Oil-Whe
covar

Oil-Sug
covar

Corn
var

Cor-Whe
covar

Cor-Sug
covar

Wheat
var

Whe-Sug
covar

Sugar
var

Vola�lity
recep�ons ( i )

Oil var 1

Oil-Cor covar 2

Oil-Whe covar 3

Oil-Sug covar 4

Corn var 5

Cor-Whe covar 6

Cor-Sug covar 7

Wheat var 8

Whe-Sug covar 9

Sugar var 10
Vola�lity

transmissions ( j )
1 2 3 4 5 6 7 8 9 10 Total Spillovers

From

Oil cross transmissions/
Agricultural cross recep�ons

Agricultural cross transmissions/Oil
cross recep�ons

Agricultural own spillovers

Oil own spillovers

F I G U R E 1 Structure of a typical effect matrix 𝚿𝑑,𝑡 in the case of the ethanol group

Note: This table illustrates (co)variation patterns in terms of volatility transmissions from variables 𝜂𝑗 (columns) and volatility receptions of variables

𝜂𝑖 (rows). Separated by division lines, four additional segments represent sector-specific transmissions and receptions on crude oil and agricultural

markets.

from the six covariances (𝜂𝑗𝑡, 𝑗 = 2, 3, 4, 6, 7, 9), and the

variances of crude oil, wheat, and sugar (𝜂𝑗𝑡, 𝑗 = 1, 8, 10).

Similarly, column 5 of Ψ𝑑,𝑡 collects the effects transmitted by

corn’s variance to the remaining (co)variances. Accordingly,

net spillovers are

𝑁𝑖,𝑡 = 𝑇𝑖,𝑡 −𝑅𝑖,𝑡 (13)

If 𝑁𝑖,𝑡 is positive, the variable 𝜂𝑖 acts as a net volatility trans-

mitter in time 𝑡. A negative outcome quantifies a net recep-

tion. By construction,
∑𝐾∗

𝑖=1 𝑁𝑖,𝑡 = 0 for all 𝑡.

3.3 Volatility spillovers among food and oil
markets
At finer levels of aggregation, the following sectoral statistics

capture effects among products sharing common characteris-

tics or dynamics, such as feedstock markets.

1. The index of “Oil cross transmissions/Agricultural cross
receptions” gathers volatility spilling from crude oil

(co)variations to agricultural markets

𝑇
(𝑂)
𝑡

= 𝑅
(𝐴)
𝑡

=
∑4

𝑖=1
∑𝐾∗

𝑗=5 𝜆𝑖𝑗,𝑡

𝐾∗ (14)

2. The “Oil own spillovers” index summarizes volatility orig-

inating and spilling over to (co)variations of crude oil

𝑆
(𝑂)
𝑡

=
∑4

𝑖,𝑗=1, 𝑖≠𝑗 𝜆𝑖𝑗,𝑡

𝐾∗ (15)

3. In analogy to 𝑇
(𝑂)
𝑡

and 𝑅
(𝐴)
𝑡

, “Agricultural cross transmis-
sions/crude oil cross receptions” gather volatility spilling

from agricultural (co)variations to crude oil markets

𝑇
(𝐴)
𝑡

= 𝑅
(𝑂)
𝑡

=
∑𝐾∗

𝑖=5
∑4

𝑗=1 𝜆𝑖𝑗,𝑡

𝐾∗ (16)

4. Similarly to 𝑆
(𝑂)
𝑡

, “Agricultural own spillovers” summ-

arize volatility originating and spilling over to (co)varia-

tions of agricultural markets

𝑆
(𝐴)
𝑡

=
∑𝐾∗

𝑖,𝑗=5, 𝑖≠𝑗 𝜆𝑖𝑗,𝑡

𝐾∗ (17)

In addition, the relative contribution of crude oil to uncer-

tainty at agricultural markets obtains as the share

𝑆ℎ
(𝐴)
𝑡

= 𝑅
(𝐴)
𝑡

∕
(
𝑅
(𝐴)
𝑡

+ 𝑆
(𝐴)
𝑡

)
(18)

3.4 Market-specific volatility receptions
Owing to commodity-specific characteristics (e.g., market

size and liquidity, internationally traded volumes, relevance

as staple food or industrial raw material), oil price uncertain-

ties might threaten the stability of specific agricultural mar-

kets in different manners and with varying strength. Measures

of market-specific exposures to crude oil shocks at higher fre-

quencies allow on-time monitoring of potentially emergent

food security threats and likely facilitate focalized interven-

tions such as safety nets, import promotions or strategic stock

releases to stabilize prices.

Let 𝑎𝑚 = {𝑎1, 𝑎2, 𝑎3} denote a set of indices of vec-

tors 𝜂𝑡 referring to feedstock (co)variations that involve a
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particular market “𝑚,” m ∈ {corn, wheat, sugar, soybean,
rapeseed, palm}. For instance, in the case of the ethanol

group, we have 𝑚 ∈ {𝑐𝑜𝑟𝑛, 𝑤ℎ𝑒𝑎𝑡, 𝑠𝑢𝑔𝑎𝑟}. Noticing that

log price changes of wheat are ordered after those of crude

oil and corn, for example, 𝑎𝑤ℎ𝑒𝑎𝑡 = {6, 8, 9} (see Ψ𝑑,𝑡 in

Figure 1). At the level of single food markets, total volatil-

ity receptions and those originating in crude oil markets read,

respectively, as

𝑅
(𝑚)
𝑡

=
∑

𝑖∈𝑎𝑚
∑𝐾∗

𝑗=1,𝑗≠𝑖 𝜆𝑖𝑗,𝑡

𝐾∗ and 𝑅f𝑂(𝑚)
𝑡

=
∑

𝑖∈𝑎𝑚
∑4

𝑗=1 𝜆𝑖𝑗,𝑡

𝐾∗ (19)

3.5 Biofuel policies and volatility receptions
from crude oil markets
The empirical evidence on the impact of crude oil volatility

on agricultural commodities is heterogeneous. While some

authors confirm recently strengthened linkages among crude

oil, biofuels, and distinct agricultural markets (e.g., Serra

et al., 2011; Wu & Li, 2013), others find no (or minor) evi-

dence of crude oil volatility influencing agricultural com-

modities (e.g., Gardebroek & Hernandez, 2013; Kaltalioglu

& Soytas, 2011; Qiu, Colson, Escalante, & Wetzstein, 2012;

Zhang, Lohr, Escalante, & Wetzstein, 2009). Zilberman,

Hochman, Rajagopal, Sexton, and Timilsina (2012) argue that

tracing the directional effects of changes in biofuel prices

necessitates a thorough understanding of the causes of agri-

cultural price changes. Accordingly, a stream of recent litera-

ture (e.g., Bobenrieth, Wright, & Zeng, 2013; Mitchell, 2008;

Wright, 2011) suggests that the main distinction between

the 2006 food crisis and previous turmoil episodes in grain

and oilseed markets is the emergence of biofuels and enact-

ments of ambitious policies designed for their support. In this

regard, Abbott (2013), Carter, Rausser, and Smith (2012) and

Tyner (2010) motivate the consideration of policy interven-

tions at precise time points to reveal changes in the food–oil

link. Therefore, our empirical analysis of cross-market origins

of food price variations complements broad unconditional

assessments with evidence from regression models that are

informative on the role of crude oil volatility, general finan-

cial market uncertainty and precisely defined policy regimes.

4 VOLATILITY SPILLOVERS IN
FOOD–OIL DYNAMIC SYSTEMS

In this section, we introduce the analyzed vector systems

of daily log price changes and provide some unconditional

descriptive statistics, as well as BEKK model estimates to

quantify conditional (co)variances. Turning to model implica-

tions, we discuss specific market relations in terms of overall

and directional volatility spillovers and highlight the specific

role of crude oil markets in contributing to uncertainties on

agricultural markets. Finally, we use market-specific volatility

receptions to uncover the effects of biofuel policies on feed-

stock price uncertainties.

4.1 Log price changes on food and crude oil
markets
Covering the period between October 3, 1995, and February

27, 2015, we analyze daily data for spot prices of corn, wheat,

sugar, soybean, palm and crude oil, as well as one futures

series for rapeseed. Time series have been drawn from Thom-

son Reuters.

Table 1 documents means and standard deviations of log

price changes for distinguished subperiods. During Period I,

most agricultural commodities faced declining prices until

2000, which revert thereafter, characterizing the beginning of

the so-called “super cycle” (Erten & Ocampo, 2013). Average

price changes turn positive in Period II. Due to price drops in

late-2008 and 2014, average log crude oil price changes are

negative in Period II. Moreover, unconditional standard devi-

ations for wheat, corn, and soybean increased by 64%, 34%,

and 11%, respectively, suggesting that these markets might

have experienced strengthened expositions to risk receptions.

4.2 BEKK model evaluations
With reference to the vector return specification in (1), we

regress vector-valued log price changes 𝑟𝑡 on lagged values

𝑟𝑡−1, an intercept and a time dummy variable indicating Period

II with unit values.11 Subsequent to the linear regressions, we

subject estimated residual vectors �̂�𝑡 to QML estimation of

the covariance dynamics in (2).Table A2 provides model esti-

mates for the two commodity groups. For the ethanol system,

𝑡-ratios point to a few marginally significant off-diagonal ele-

ments of the news response parameters in the matrix 𝐹 . In

the case of the biodiesel group, the likelihood ratio for testing

the null hypothesis of a so-called diagonal BEKK model is

highly significant, with a corresponding 𝑝-value below 0.1%

(test statistic of 72.12; 𝜒2-distributed with 24 degrees of free-

dom under the null hypothesis of diagonal matrices 𝐹 and 𝐺).

Hence, the empirical data support the formalization of a rich

cross-variable dynamic (co)variance structure that is specific

to the BEKK model.

11 Consistent lag order selection for 𝑟𝑡 is quite demanding in case of VAR

residuals that exhibit MGARCH covariance profiles. For market efficiency

considerations, we opt for short-order models (i.e., VAR(0) or VAR(1)). Con-

ditioning the QML MGARCH estimation on VAR(1) or VAR(2), residu-

als obtains quantitatively almost-identical covariance paths. For the ethanol

commodity group, almost-identical MGARCH covariance estimates are also

obtained from modeling centered returns, that is, VAR(0) residuals. Simi-

larly, MGARCH outcomes are almost invariant to alternatively assuming a

common mean or a shift in mean returns to occur with the food/financial cri-

sis (Period I vs. Period II).
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T A B L E 1 Descriptive statistics of log price changes

Mean SD
Log price changes Period I Period II Period I Period II 𝚫%
Oil, crude WTI Cushing US$/BBL 0.464 −0.085 24.74 23.31 −6%

Corn, No. 2 yellow US$ Cts/Bu −0.146 0.255 15.97 21.36 34%

Wheat, No. 2 hard (Kansas) US$ Cts/Bu −0.035 0.043 15.31 25.07 64%

Sugar, raw (ISA) daily price US$ Cts/lb 0.068 0.009 21.80 20.44 −6%

Soybean oil, crude Decatur US$ Cts/lb −0.087 0.180 14.57 16.12 11%

Rapeseed oil, Dutch FOB NWE 1 m fwd EUR/MT 0.134 0.042 19.14 14.43 −25%

Palm oil, crude MAL CIF Rdam US$/MT −0.140 0.205 18.61 17.92 −4%

Note: Means and standard deviations (SDs) have to be divided by 1,000. The results for Period I (Period II) correspond to the subsamples October 1995 until December

2005 (January 2006 until February 2015). The column labeled Δ% documents percentage changes from Period I to Period II.
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F I G U R E 2 Total volatility spillovers and crude oil price volatility

Notes: The upper and medium panels display total spillovers 𝑆𝑡 as defined in (11) for each commodity group and implied by the QML estimates of

the model in (1) and (2). The bottom panel displays conditional standard deviations of crude oil log price changes as implied by an univariate

GARCH (1,1) model. The displayed conditional oil volatilities are very similar to alternative estimates from the BEKK models and show

unconditional correlations of 0.998 and 0.963 for the ethanol and biodiesel group, respectively.

4.3 Aggregate and directional spillovers
As depicted in Figure 2, for both commodity groups total

volatility spillovers exhibit an upturn during Period II, espe-

cially in the aftermath of the financial breakdown in Septem-

ber 2008 and during the first half of 2011, when most of

the considered agricultural markets attain maximum prices.12

While average total spillovers almost doubled in Period II,

conditional standard deviations of crude oil slightly decreased

on average by 12%. However, unconditional correlations

12 Corn reaches a maximum price later in August 2012.

between crude oil standard deviations and total spillover

indices markedly shift upward (i.e., from 0.18 (0.03) for the

ethanol (biodiesel) group in Period I to 0.61 (0.32) in Period

II).13 The lower crude oil volatility coupled with a strength-

ened link with feedstock markets during Period II signals a

change in the relevant volatility transmission channels, which

almost coincides with enactments of key biofuel policies.

13 The spillover indices displayed in Figure 2 are similar in shape to those

in Trujillo-Barrera, Mallory, and Garcia (2012). However, methodologically

it is worth noting that—unlike 𝑆𝑡 defined in (11)—their spillover indices

depend by construction on crude oil volatility.
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F I G U R E 3 Net directional volatility spillovers

Note: The graphs display sums of net volatility transmissions as defined in (13), separated by commodity types (crude oil and agricultural). Positive

values represent net volatility transmissions, while negative ones denote net receptions.

Figure 3 displays net spillovers of variances and covari-

ances distinguishing crude oil and agricultural commodi-

ties. Crude oil and agricultural variances have mainly acted

as net volatility transmitters, whereas particularly agricul-

tural covariances have been receiving volatility. The volatil-

ity receptions of biodiesel covariations are larger than those

for ethanol, suggesting that vegetable oil markets might be

more sensitive to shocks originating in either agricultural

or crude oil markets, in particular during Period II. Liquid-

ity differences might plausibly explain the distinctive behav-

ior of ethanol and biodiesel feedstock markets. Additionally,

the industrial use of the considered vegetable oils—which

includes their use as biodiesel feedstocks—grew much faster

during Period II compared with the industrial use of grains or

sugar.14

14 Own estimates based on information from the USDA Foreign Agricul-

tural Service (retrieved from https://apps.fas.usda.gov/psdonline/app/index.

html#/app/advQuery). While the industrial use of corn—the largest processed

4.4 Sectoral spillovers
As documented in Table 2, the largest contributions to aggre-

gated spillovers can be characterized as effects originating

from and spilling to agricultural markets (𝑆
(𝐴)
𝑡

). In order

to assess inter-sectoral vulnerabilities, 𝑅
(𝐴)
𝑡

(𝑇
(𝑂)
𝑡

) collects

effects of shocks originating in crude oil and spilling over

to agricultural markets. On average, this index is larger for

biodiesel compared with ethanol feedstocks during both sub-

periods. Hence, vegetable oils are more exposed to crude

oil developments compared with grains and sugar. More-

over, agricultural and crude oil markets experienced a tight-

ening, which can be seen from two comparative assessments

of average sectoral statistics. First, in terms of 𝑅
(𝐴)
𝑡

, average

outcomes have more than doubled for Period II compared

with Period I. Second, the interaction indices of crude oil-

feedstock covariations (𝑆
(𝑂)
𝑡

) are on average almost twice as

ethanol feedstock—grew by 79%, the use of soybean, rapeseed and palm grew

by factors of six, four, and three, respectively.

https://apps.fas.usda.gov/psdonline/app/index.html\043/app/advQuery
https://apps.fas.usda.gov/psdonline/app/index.html\043/app/advQuery
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T A B L E 2 Average sectoral spillovers

Ethanol 𝑺 𝑹(𝑨) 𝑺 (𝑶) 𝑺 (𝑨) 𝑻 (𝑨) 𝑺𝒉(𝑨)

Period I 86.78 6.42 18.66 56.74 4.95 0.10

Period II 151.73 16.28 34.41 84.63 16.41 0.16

Δ% 75% 154% 84% 49% 231% 59%

Biodiesel
Period I 72.82 9.54 16.69 39.51 7.09 0.19

Period II 140.82 18.98 31.18 74.31 16.36 0.20

Δ% 93% 99% 87% 88% 131% 5%

Note: Values (except for Δ% and 𝑆ℎ(𝐴)) have to be divided by 1,000. As defined

in (14) and (16), 𝑇
(𝑂)
𝑡

= 𝑅
(𝐴)
𝑡

and 𝑇
(𝐴)
𝑡

= 𝑅
(𝑂)
𝑇

, respectively. In addition, 𝑆ℎ
(𝐴)
𝑡

defined in (18) is an estimate of the relative contribution of crude oil to uncer-

tainty on agricultural markets. See Table 1 for further details and Figure 1 for an

illustrative display of the informational content of the sectoral indices.

large in Period II compared with Period I. From average shares

𝑆ℎ(𝐴), one might conclude that uncertainties stemming from

shocks to crude oil markets account for about one-fifth of the

total volatility spillover receptions in feedstock markets dur-

ing Period II (i.e., 0.16 (0.20) within the ethanol (biodiesel)

group). Although the share of crude oil’s uncertainty is larger

for biodiesel, the contribution of oil markets to uncertainties

on agricultural markets has grown more strongly for ethanol

feedstocks in Period II (59%).

Apart from cross-sectoral developments from crude oil to

agricultural markets, it is also interesting to see the reverse

effects of shocks originating in agricultural and spilling

over to crude oil markets. Although the average quotes of

𝑇
(𝐴)
𝑡

(𝑅(𝑂)
𝑡

) are smallest among the four sectoral indices for

Period I and both commodity groups, it approaches 𝑅
(𝐴)
𝑡

in

Period II. For both commodity groups, it shows the largest

growth among the four sectoral indices. With a focus on

corn, wheat, and soybean, similar reverse spillovers have been

reported by Nazlioglu et al. (2013) and Grosche and Heck-

elei (2016). To explain this outcome, Baumeister and Kil-

ian (2014) and Nazlioglu et al. (2013) argue that developed

countries’ support of biofuels has strengthened information

flows among energy and food markets. Nazlioglu et al. (2013)

highlight two additional reasons to expect feedback spillover

effects: first, traders in different markets might react jointly

to noneconomic factors; and second, for portfolio strategies

investors concentrate on price dynamics of key food crops

such as wheat.

4.5 Assessing the role of major biofuel
policies
Observing an overall enhanced vulnerability of feedstock

markets, the following refined analysis has two main pur-

poses. First, it intends to unravel how the market-specific

volatility receptions 𝑅f𝑂(𝑚)
𝑡

in (20) respond to price uncer-

tainties on crude oil markets. Second, focusing on important

T A B L E 3 Volatility receptions from crude oil on feedstock

markets

Ethanol Biodiesel
𝑹

(𝒎) Corn Wheat Sugar Soybean Rapeseed Palm
Period I 43.86 42.35 19.05 28.05 27.26 26.57

Period II 66.83 62.36 37.30 56.40 51.49 47.69

Δ% 52% 47% 96% 101% 89% 79%

Mandate 71.04 67.33 39.21 58.71 57.42 50.07

Tax credit 65.84 59.69 37.56 59.46 49.39 49.58

Δ% −7% −11% −4% 1% −14% −1%

𝑹𝐟𝑶(𝒎)

Period I 3.56 3.38 3.15 4.27 5.58 4.95

Period II 9.19 8.19 8.24 12.92 8.36 8.42

Δ% 158% 142% 162% 202% 50% 70%

Mandate 10.24 9.73 9.34 12.93 8.94 8.87

Tax credit 8.93 7.07 7.62 13.59 8.20 8.55

Δ% −13% −27% −18% 5% −8% −4%

Note: The table documents reception statistics defined in (19). Average outcomes

are provided by subperiods and conditioning on policy regimes prevailing in Period

II. Reported statistics (except for Δ%) have been multiplied by 1,000. Mandate

binding periods comprise September 2006 to March 2007, December 2008 to April

2010, and May 2011 to March 2014. Tax credit episodes include April 2007 to

November 2008, May 2010 to April 2011, and April 2014 to February 2015.

channels of information flows, we test for changes in 𝑅f𝑂(𝑚)
𝑡

during distinct biofuel policy regimes that prevailed in Period

II (de Gorter & Drabik, 2016).

4.5.1 Feedstock volatility receptions
The results documented in Table 3 show that strengthened

market integration emerges in terms of increased total volatil-

ity receptions on all feedstock markets. During the postcri-

sis timeframe (Period II), average volatility receptions are

between 47% (wheat) and 101% (soybean) larger compared

with average outcomes for the precrisis observations (Period

I). While total receptions do not provide evidence regarding

the origin of information flows, it is striking that the food cri-

sis and the subsequent financial bust have intensified volatil-

ity receptions from crude oil markets (𝑅f𝑂(𝑚)
𝑡

). In absolute

and relative terms, changes of volatility receptions point to

sizable market heterogeneities. In relative terms, soybean suf-

fered a threefold upsurge of volatility receptions. While aver-

age statistics for 𝑅f𝑂(𝑐𝑜𝑟𝑛), 𝑅f𝑂(𝑤ℎ𝑒𝑎𝑡) and 𝑅f𝑂(𝑠𝑢𝑔𝑎𝑟) also

markedly augmented by a factor of about 2.5, correspond-

ing statistics 𝑅f𝑂(𝑟𝑎𝑝𝑒𝑠𝑒𝑒𝑑) and 𝑅f𝑂(𝑝𝑎𝑙𝑚) increased by 50%

and 70%, respectively. Focusing on volatility receptions on

corn markets, our analysis allows for an interesting compari-

son with the results of Trujillo-Barrera et al. (2012). Accord-

ing to our estimates, the relative contribution of crude oil to

volatility receptions on corn markets (i.e., 𝑅f𝑂(𝑐𝑜𝑟𝑛)∕𝑅(𝑐𝑜𝑟𝑛))

is 13.8% in Period II. For the period from 2006 to 2011,

Trujillo-Barrera et al. (2012) document a similar relative
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contribution of 14% under the assumption of exogenous crude

oil market dynamics and volatilities. The remaining feed-

stock vulnerabilities to shocks originating in crude oil mar-

kets are between 13.1% (𝑅f𝑂(𝑤ℎ𝑒𝑎𝑡)∕𝑅(𝑤ℎ𝑒𝑎𝑡)) and 22.9%

(𝑅f𝑂(𝑠𝑜𝑦𝑏𝑒𝑎𝑛)∕𝑅(𝑠𝑜𝑦𝑏𝑒𝑎𝑛)) during Period II. Pointing to gen-

erally enhanced food–oil linkages, it is worth noting that

in precrisis timeframes (Period I) feedstock vulnerabilities

𝑅f𝑂(𝑚)∕𝑅(𝑚) were 8% for corn and wheat, and about 16% for

sugar and soybean.15 In addition to the augmented relative

contributions of crude oil to uncertainties on different agri-

cultural markets in Period II, differentiated effects between

policy regimes also warrant consideration. Seemingly at odds

with the arguments of de Gorter et al. (2015), (binding) man-

date implementations appear to be characterized by enhanced

crude oil spillovers to agricultural markets (aside from the

case of soybean). In order to further analyze the role of biofuel

policies in shaping food–oil linkages, two remarks are worth

mentioning. On the one hand, it is likely that both market het-

erogeneities and crude oil volatility are jointly important to

unravel marginal effects that can be traced back to enactments

of distinct biofuel policies. On the other hand, the detection

of such marginal effects is complicated by the fact that all

policy enactments took place within the postcrisis timeframe

(Period II). Hence, general financial market uncertainty might

have also confounded information flows between crude oil

and feedstock markets.

4.5.2 Feedstock volatility receptions and the
role of biofuel policies
Policy enactments and descriptive evidence
Within our sample period, biofuel policies were enacted dur-

ing Period II from September 2006 until February 2015, cov-

ering a total of 2,216 observations (see also the notes to

Table 3). These policy periods capture three episodes of bind-

ing mandates, to which we refer as Man I to Man III, as well

as three episodes of binding tax credits, labeled as Tax I to

Tax III. Specifically, Man I, Man II and Man III (Tax I, Tax

II, and Tax III) cover the periods September 2006 to March

2007, December 2008 to April 2010, and May 2011 to March

2014 (April 2007 to November 2008, May 2010 to April 2011,

and April 2014 to February 2015).16 Overall, binding man-

date and tax credit policies were active for 1,282 and 934 sam-

ple observations, respectively.

15 The two remaining biodiesel feedstock markets—rapeseed and palm—

experienced higher vulnerabilities to crude oil shocks during the precrisis

period of 20.5% and 18.6%, respectively.

16 Although not explicitly stated in de Gorter and Drabik (2016), we assume

two additional periods of binding policies after April 2011, that is, Man III

and Tax III. As identified by de Gorter, Drabik, and Just (2015, p. 155), a U.S.

tax credit was enacted in April 2014 and extended through 2015. Nonethe-

less, an enactment does not necessarily imply that a policy is binding, that is,

determining biofuel prices.

Figure 4 contrasts crude oil volatility receptions of feed-

stock markets (i.e., 𝑅f𝑂(𝑐𝑜𝑟𝑛)
𝑡

, first row of Figure 4; aver-

age receptions 𝑅f𝑂(𝑚)
𝑡

, 𝑚 ≠ 𝑐𝑜𝑟𝑛, second row) against crude

oil standard deviations (third row). During Tax I and Man

II, enhanced volatility receptions on feedstock markets coin-

cide with extended levels of crude oil volatility. In its bottom

panel, Figure 4 also displays the (implied) Volatility Index of

the Chicago Board Options Exchange (VIX) to capture pat-

terns of general financial market uncertainties.17 The evo-

lution of the VIX highlights the important role of general

financial market turmoil in shaping uncertainty receptions on

agricultural markets. For instance, despite relative tranquil

crude oil markets, volatility receptions of feedstock markets

sharply increase with the “Black Monday” stock market crash

of August 8, 2011. Further critical episodes of general uncer-

tainties developed subsequent to the declaration of default of

Lehman Brother’s on September 15, 2008, and the so-called

“Flash Crash” of May 6, 2010.

Evidence from profile regressions
Allowing for a flexible conditioning of volatility reception

patterns on feedstock markets, we consider regression mod-

els of the following type

𝑅f𝑂(𝑚)
𝑡

= 𝛾
(𝑚)
1 +𝐷

(cri)
𝑡

𝛾
(𝑚)
2 + Tax𝑡 𝛽

(𝑚)
1 + Man𝑡 𝛽

(𝑚)
2

+ sdoil𝑡 𝛾
(𝑚)
3 + sdoil𝑡 ⋅𝐷

(08)
𝑡

𝛾
(𝑚)
4 + sdoil𝑡

⋅ 𝐷(10)
𝑡

𝛾
(𝑚)
5 + sdoil𝑡 ⋅𝐷

(11)
𝑡

𝛾
(𝑚)
6 + 𝑒𝑡 (20)

By model specification, intercept terms 𝛾
(𝑚)
1 provide a

quantitative assessment of unconditional volatility receptions

in Period I, during which no biofuel policy was enacted. The

dummy variable 𝐷
(𝑐𝑟𝑖)
𝑡

indicates additional effects on volatil-

ity transmission that occurred in Period II without correspon-

dence with biofuel policies. Moreover, the regression includes

(a) effects of crude oil volatility (𝛾
(𝑚)
3 ) and (b) effects of

this variable that are specific to particular episodes of gen-

eral financial unrest (𝛾 (𝑚)
𝑖

, 𝑖 = 4, 5, 6). In taking account

of general financial uncertainty, dummy variables 𝐷
(08)
𝑡

,𝐷
(10)
𝑡

and 𝐷
(11)
𝑡

capture VIX levels above 0.03 subsequent to the

three disruptive events mentioned above (“Black Monday,”

Lehman default, “Flash crash”). After these events, the VIX

took some time to return to more regular levels below 0.03

(see also the fourth row of Figure 4). The three periods of

enhanced financial turmoil cover 217 (𝐷
(08)
𝑡

, September 2008

to June 2009), 43 (𝐷
(10)
𝑡

, May 2010 to June 2010) and 88

17 The VIX is a 30-day forward-looking measure of investors’ risk percep-

tions. VIX data were obtained from the Federal Reserve Bank of St. Louis

(retrieved from https://fred.stlouisfed.org/). A few missing observations have

been replaced by linear interpolation.

https://fred.stlouisfed.org/
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F I G U R E 4 Volatility receptions from crude oil and binding policy periods

Note: The upper graph depicts corn volatility receptions from crude oil (𝑅f𝑂(corn)
𝑡

, see (19)) over successive periods between September 2006 and

February 2015 (Period II) when either a mandate (Man I, II, III) or a tax credit policy (Tax I, II, III) was binding. Mandate periods comprise

September 2006 to March 2007, December 2008 to April 2010, and May 2011 to March 2014. Tax credits were enforced during April 2007 to

November 2008, May 2010 to April 2011, and April 2014 to February 2015. The second panel shows average volatility receptions for the remaining

feedstock markets. The third and fourth graphs show crude oil volatility and the VIX Volatility Index (divided by 1,000), respectively. Subsequent to

singular events (Lehman default, “Flash Crash”, “Black Monday”), shaded areas of the VIX panel cover high-uncertainty episodes in financial

markets during September 2008 to June 2009 (𝐷08), May 2010 to June 2010 (𝐷10), and August 2011 to November 2011 (𝐷11).

(𝐷
(11)
𝑡

, August 2011 to November 2011) observations.18 In

order to isolate the marginal effects of enactments of dis-

tinct categories of biofuel policies, the profile regression

in (20) includes two binary indicators of biofuel policies,

namely, Tax𝑡 and Man𝑡, which refer to tax credit (Tax I to

Tax III) and mandate (Man I to Man III) periods, respec-

tively. Finally, 𝑒𝑡 is an uninformative model residual. Comple-

menting market-specific results, 𝑚 = 1, 2,… , 6, we provide

an overall assessment by imposing parametric restrictions

of the form 𝛾
(𝑚)
𝑖

= 𝛾𝑖, 𝑖 = 1, 2,… , 6, and 𝛽
(𝑚)
𝑖

= 𝛽𝑖 , 𝑖 =

18 The employed threshold value of 0.03 is quite close to the 86% quantile

of the VIX. In only 10% of all observations is the displayed VIX beyond

0.033. We believe that defining the periods in this way does not bias detecting

marginal transmission patterns that can be traced back to policy categories.

The first period covers observations that belong to both policy categories (Tax

I, Man II), while the second and third periods are fully covered by time frames

when tax credits (Tax II) and mandates (Man III) were in place, respectively.

1, 2.19 If the arguments of de Gorter et al. (2015) carry over

to (co)variance dynamics of the food–oil nexus, one would

expect 𝛽
(𝑚)
1 > 𝛽

(𝑚)
2 .

Table 4 summarizes parametric estimates from the profile

regressions given in (20). Coefficient estimates �̂�
(𝑚)
1 deliver

significant yet negative values for each feedstock, signaling

lower uncertainty flows originating in crude oil markets dur-

ing no-policy periods. During the crisis period, all agricul-

tural markets experienced additional positive and significant

spillover receptions from crude oil (�̂�
(𝑚)
2 ). Moreover, the mag-

nitudes of parameter estimates �̂�
(𝑚)
3 highlight the active role of

crude oil volatility for uncertainty receptions in each agricul-

tural market. Accounting for crude oil and financial market

19 Even if the imposed restrictions are not met by the data, restricted estimates

hold interest since pooling heterogeneous parameters is effective to reduce

estimation uncertainty.
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T A B L E 4 Profile regression results (see (20)) for feedstock volatility receptions

Ethanol Biodiesel Feedstocks
Corn Wheat Sugar Soybean Rapeseed Palm jointly

�̂�1 no policy −4.34 −2.97 −5.08 −3.98 −3.24 −2.84 −3.74

(−13.53) (−10.02) (−13.04) (−9.26) (−8.01) (−7.15) (−23.09)

�̂�2 crisis 0.76 0.46 1.86 6.55 1.10 1.01 1.96

(5.46) (3.09) (9.61) (19.45) (4.92) (4.68) (17.16)

�̂�3 sdoil 3.24 2.60 3.37 3.38 3.62 3.19 3.23

(23.09) (20.11) (19.19) (18.98) (19.76) (18.39) (45.84)

�̂�4 (sdoil ⋅𝐷(08)) 5.28 4.73 4.55 4.44 1.22 0.78 3.50

(27.63) (22.64) (24.31) (12.42) (4.58) (3.00) (30.27)

�̂�5 (sdoil ⋅𝐷(10)) 1.05 −0.15 −0.97 1.15 0.89 1.38 0.56

(3.69) (−0.93) (−9.22) (3.02) (2.92) (2.74) (3.39)

�̂�6 (sdoil ⋅𝐷(11)) 3.98 5.81 4.18 6.41 8.81 6.78 5.99

(13.11) (15.41) (15.10) (12.67) (13.33) (11.41) (27.98)

𝛽1 Tax 3.74 2.49 2.24 2.20 2.09 3.13 2.65

(15.72) (11.46) (8.97) (4.96) (7.37) (10.39) (18.33)

𝛽2 Man 3.19 2.99 2.02 −0.53 1.08 2.21 1.83

(16.22) (14.17) (9.39) (−1.33) (4.30) (7.57) (13.75)

(𝛽1 − 𝛽2) (Tax - Man) 0.55 −0.50 0.22 2.74 1.01 0.92 0.82

(2.00) (−1.85) (0.99) (6.02) (3.36) (2.49) (5.76)

𝑅f𝑂Tax 7.15 5.61 6.30 12.08 7.76 8.19 7.85

𝑅f𝑂Man 6.60 6.11 6.08 9.34 6.76 7.27 7.03

Δ% 8% −8% 4% 29% 15% 13% 12%

Note: To improve the scale properties of the estimates, the dependent variables 𝑅f𝑂(𝑚)
𝑡

defined in (19) have been multiplied by 1,000 (t-ratios in parentheses). The noncrisis

(crisis) episode includes October 1995–December 2005 (January 2006 to February 2015). The “Tax - Man” panel documents a statistic for testing the null hypothesis of

equal effects under both biofuel policy categories (𝐻0 ∶ 𝛽1 = 𝛽2 ). The bottom lines show model-implied average uncertainty receptions for both policy periods (see (21)

and (22)) and the corresponding change in percentage points. For further notes, see Figure 4.

uncertainty jointly, �̂�
(𝑚)
4 to �̂�

(𝑚)
6 show particularly large inter-

action effects subsequent to the “Black Monday” crash of

August 2011, followed in magnitude by the financial bust of

September 2008. While tax credit impacts seem more homo-

geneous across markets (𝛽
(𝑚)
1 ), during mandate enforcements

(𝛽
(𝑚)
2 ) crude oil spills over (on average) to ethanol feedstocks

with more strength, in particular for corn. Providing con-

forming evidence for the theoretical arguments of de Gorter

et al. (2015), significance tests for the difference between esti-

mates 𝛽
(𝑚)
1 and 𝛽

(𝑚)
2 reveal that spillover receptions of agri-

cultural markets are larger during tax credit enactments. This

result holds for individual markets (except for wheat) and the

joint model. Proceeding beyond the comparison of parameter

estimates, the profile regressions in (20) allow determining

policy-specific average reception levels as

𝑅f𝑂(𝑚)
Tax = �̂�

(𝑚)
1 + �̂�

(𝑚)
2 + 𝛽

(𝑚)
1 + 𝐸[𝑠𝑑𝑜𝑖𝑙𝑡] �̂�

(𝑚)
3 (21)

and

𝑅f𝑂(𝑚)
Man = �̂�

(𝑚)
1 + �̂�

(𝑚)
2 + 𝛽

(𝑚)
2 + 𝐸[𝑠𝑑𝑜𝑖𝑙𝑡] �̂�

(𝑚)
3 (22)

Approximating 𝐸[𝑠𝑑𝑜𝑖𝑙𝑡] by the average level of crude oil

volatility during policy periods of 2.16%,20 the bottom panel

of Table 4 shows average reception levels for both policy peri-

ods, leaving out the marginal effects assigned to the iden-

tified episodes of general market uncertainties (𝐷
(08)
𝑡

, 𝐷
(10)
𝑡

,

and 𝐷
(11)
𝑡

). For instance, as implied by the estimates in the

rightmost column of Table 4, the pooling of all feedstocks

obtains approximations𝑅f𝑂Tax and𝑅f𝑂Man of 7.85 and 7.03,

respectively. Hence, on average volatility receptions are about

12% larger during the enactment of tax credits. Moreover,

during tax implementations, spillover effects are stronger for

biodiesel compared with ethanol feedstocks. Crude oil uncer-

tainty receptions in soybean markets increase the strongest

(i.e., by 29%), followed by rapeseed (15%) and palm (13%),

whereas the impacts on corn (8%) and sugar (4%) are compar-

atively weaker.

20 During periods of mandate and tax policies, the unconditional level of

crude oil volatility is 2.17% and 2.15%, respectively.
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5 CONCLUSIONS

Taking advantage of recent advances in timely assessments of

volatility spillovers (Fengler & Herwartz, 2018) we quantify

volatility spillovers among selected agricultural markets and

crude oil at different market aggregation layers and for spe-

cific timeframes. We analyze volatility transmissions for two

groups of commodities. Besides crude oil, considered systems

include corn, wheat, and sugar feedstocks (ethanol system) or

soybean, rapeseed, and palm (biodiesel system).

In general, food–oil linkages were weaker prior to the

recent turbulent periods at food and financial markets, that

is, between 1995 and 2005. Thereafter, sector-wide average

crude oil volatility transmissions account for 16% (20%) of

price uncertainty in grains and sugar (vegetable oils) mar-

kets (2006–2015). Besides binding biofuel policies (i.e., man-

date or tax credit), crude oil volatility is an important deter-

minant of uncertainties received by feedstock markets. The

financial shocks of September 2008, May 2010 and August

2011 might have also exacerbated uncertainty in crude oil

markets, further confounding transmission effects. Accord-

ingly, in order to better elucidate the marginal effects of

biofuel policies, we controlled for other market conditions.

Throughout mandate enactments, our findings reveal more

acute risk receptions from crude oil markets for ethanol com-

pared with biodiesel feedstocks. Moreover, policy-induced

volatility spillovers from crude oil to agricultural markets are

12% stronger for binding tax credit regimes (de Gorter et al.,

2015).
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APPENDIX

T A B L E A 1 Review of recent contribution to food–oil linkages

Article Prices Period Method Main findings
1. Algieri (2014) USA 2005–2013,

daily

MGARCH Lagged crude oil and ethanol returns have a significant influence on

corn, wheat, sugar, and soybean volatilities.

2. Wu and Li (2013) China 2003–2012,

weekly

MGARCH Volatility spillovers from crude oil to corn and ethanol markets, but

bidirectional spillovers between corn and ethanol.

3. Serra and Gil (2012) USA 1990–2010,

monthly

MGARCH Stock forecasts lower corn volatility. Interest rate uncertainty increases

it. Ethanol volatility spills over to corn volatility; stocks and interest

rate treated as exogenous in variance equation.

4. Trujillo-Barrera

et al. (2012)

USA 2006–2011,

weekly

MGARCH Volatility transmission from crude oil to corn and ethanol markets, as

well as from corn to ethanol.

5. Alom et al. (2011) Asia-Pacific 1995–2010,

daily

MGARCH Mean and volatility spillovers from crude oil to food.

6. Serra (2011) Brazil 2000–2009,

weekly

MGARCH Shocks in crude oil and sugar markets increase ethanol volatility. No

long run relation between crude oil and sugar prices. Ethanol does

not affect either sugar or crude oil volatilities.

7. Serra, Zilberman,

and Gil (2011)

Brazil 2000–2008,

weekly

MGARCH Crude oil volatility spillover to sugar and ethanol volatilities.

Bidirectional spillovers between ethanol and sugar.

8. Serra et al. (2011) USA 1990–2008,

monthly

MGARCH Crude oil volatility spillovers to ethanol, and to corn through ethanol.

9. Wu et al. (2011) USA 1992–2009,

weekly

MGARCH Volatility spillovers from crude oil to corn spot and futures.

10. Chang and Su

(2010)

USA 2000–2008,

daily

MGARCH Volatility spillovers from crude oil to corn and soybean (2004–2008);

crude oil treated as exogenous in mean equation.

11. Zhang et al. (2009) USA 1989–2007,

weekly

MGARCH Bidirectional volatility spillovers between corn and soybean. From

soybean to ethanol only during 2000–2007.

12. Mensi et al. (2014) USA, EU 2000–2013,

daily

MGARCH and

DCC

Crude oil volatility spillovers to corn. Gasoline volatility spillovers to

corn, sorghum, and barley volatilities.

13. Gardebroek and

Hernandez (2013)

USA 1997–2011,

weekly

MGARCH and

DCC

Volatility spillovers from corn to ethanol prices, but no major

cross-market volatility effects between crude oil and corn.

14. Busse et al. (2011) EU 1999–2009,

daily

DCC Significant correlations between crude oil volatility and both rapeseed

oil and soybean volatility.

15. Nazlioglu et al.

(2013)

International 1986–2011,

daily

Granger causality

in variance

Volatility spillovers from wheat to crude oil (1986–2005).

Bidirectional causalities between crude oil and soybean, crude oil,

and wheat (2006–2011).

16. Kaltalioglu and

Soytas (2011)

International 1980–2008,

monthly

Granger causality

in variance

No volatility spillovers from crude oil to food and agricultural raw

materials.

17. Harri and Hudson

(2009)

USA 2003–2009,

daily

Granger causality

in variance

Volatility spillovers from crude oil to corn after the food crisis.

18. Liu (2014) USA 1994–2012,

daily

Cross correlation Highly significant and persistent cross correlations between the

volatilities of crude oil and each of the considered cereals.

19. Qiu et al. (2012) USA 1994–2010,

monthly

Structural VAR Demand and supply shocks are the main volatility causes for price

volatility in agricultural markets.

20. Balcombe (2011) International Various Random

parameter

Volatility spillovers from crude oil to the considered agricultural

products.

21. Du, Yu, and Hayes

(2011)

USA 1998–2009,

weekly

Stochastic

volatility

Volatility spillovers from crude oil to corn and wheat. Increased

correlations between crude oil and corn, crude oil and wheat

(2006–2009).

22. Alghalith (2010) Trinidad and

Tobago

1974–2007,

annual

Nonlinear OLS Increase of crude oil price and volatility yields higher food prices,

while an increase in crude oil supply reduces them.

Note: Studies are clustered according to the method employed and ordered with respect to their date of publication.
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T A B L E A 2 QML estimates of the BEKK model in (2)

Ethanol Biodiesel
Matrix C
Estimates 2.433 0 0 0 4.162 0 0 0

−0.318 2.365 0 0 0.668 2.443 0 0

−0.522 −0.735 3.572 0 −0.439 0.730 1.716 0

0.889 −0.175 0.118 −1.128 1.454 1.388 1.278 −0.028

QML t-ratios 3.252 0 0 0 0.968 0 0 0

−0.740 6.782 0 0 0.395 0.734 0 0

−1.168 −0.520 2.518 0 −0.069 0.298 0.330 0

1.677 −0.432 0.450 −1.545 1.711 0.427 0.571 −0.048

Matrix F
Estimates 0.190 0.001 −0.010 0.025 0.265 0.028 −0.012 0.026

−0.006 0.205 −0.059 −0.011 −0.074 0.171 −0.137 0.001

0.004 −0.032 0.325 0.014 −0.022 −0.019 0.316 0.013

0.026 −0.012 0.012 0.156 0.101 0.043 −0.014 0.237

QML t-ratios 5.498 0.137 −0.929 1.016 1.513 0.486 −0.089 1.188

−0.329 10.459 −1.581 −0.674 −0.816 1.048 −0.910 0.009

0.259 −1.627 3.967 1.125 −0.228 −0.706 0.807 0.611

1.185 −0.613 0.509 3.748 1.428 0.482 −0.099 6.351

Matrix G
Estimates 0.976 0.002 0.004 −0.007 0.946 −0.013 0.011 −0.012

0.002 0.962 0.024 0.003 0.026 0.971 0.015 −0.009

0.002 0.022 0.927 −0.003 −0.007 0.009 0.943 −0.014

−0.005 0.003 −0.002 0.986 −0.031 −0.011 0.011 0.966

QML t-ratios 100.296 0.519 1.297 −0.969 12.217 −0.470 0.170 −0.920

0.238 96.797 1.150 0.668 0.772 14.396 0.283 −0.186

0.326 1.391 21.696 −0.521 −0.081 0.405 5.125 −0.685

−0.757 0.795 −0.423 115.003 −1.007 −0.609 0.222 79.133

Note: Estimates of matrix C have to be divided by 1,000.


